SCIENCE CHINA Life Sciences
29 Feb 2024
Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair
Runfa Chen1,†, Meng-Jie Zhao1,†, Yu-Min Li1, Ao-Hui Liu1, Ru-Xin Wang1, Yu-Chao Mei1, Xuefeng Chen2, Hai-Ning Du1,*
1 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan 430072, China;
2 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
† Contributed equally to this work.
10.1007/s11427-024-2543-9
Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
Our hours
Mon 11/21 - Wed 11/23: 9 AM - 8 PM
Thu 11/24: closed - Happy Thanksgiving!
Fri 11/25: 8 AM - 10 PM
Sat 11/26 - Sun 11/27: 10 AM - 9 PM
(all hours are Eastern Time)